skip to main content


Search for: All records

Creators/Authors contains: "Daniels, William C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In reconstructing past changes in precipitation or evaporation from the geologic record, paleoclimatologists sometimes employ the dual‐biomarker isotope method. This method requires that two co‐occurring sedimentary lipids are derived from different biological sources, and that their compound‐specific2H/1H ratios record different aspects of the hydrologic cycle. Several studies have used this approach, typically by comparing the2H/1H ratios ofn‐alkyl lipids (δ2Hwax) thought to be sourced from aquatic versus terrestrial plants that gain their hydrogen atoms from lake water and soil water, respectively. Yet confidently fingerprintingn‐alkyl lipid sources continues to be a challenge because the wax inputs of different plant types vary across biomes, lake types, and time. New research in theJournal of Geophysical Research‐Biogeosciencesby Hollister et al. (2022,https://doi.org/10.1029/2022jg006903) utilizes a combination of three independent metrics to demonstrate that for Arctic lakes, mid‐chainn‐alkanoic acids can be sourced principally from aquatic plants whereas long‐chainn‐alkanoic acids derive from a mixture of aquatic and terrestrial plants. By cataloging wax compound distributions and compound‐specific H and C isotopes of many new plant species, their efforts will strengthen future biomarker paleoclimatology and reinforce previous applications of the dual‐biomarker approach in high‐latitude lakes. The identification of a lake system with a strong aquatic plant wax signal in the sediments should motivate future targeting of similar lakes for reconstructing past moisture with the dual‐biomarker method.

     
    more » « less
  2. null (Ed.)
  3. ABSTRACT

    Isoprenoid glycerol dialkyl glycerol tetraethers (iGDGTs) are commonly preserved molecular biomarkers of archaea whose distributions can be used to reconstruct past temperature, and possibly, methane and nitrogen cycling. To date, iGDGT systematics have not been widely investigated in Arctic lacustrine environments. Here, we analyze iGDGTs in sediments of Lake El'gygytgyn, located in the Russian Arctic, to reconstruct the paleoenvironmental conditions from the Pliocene to today using TEX86and other indices. The TEX86‐inferred temperature history shows a long‐term warming trend, in stark contrast to other Arctic records and other proxies from Lake El'gygytgyn, suggesting that non‐temperature factors obfuscate the use of TEX86at this site. Other GDGT‐based indices including the BIT Index, ΔRing Index, Methane Index and the GDGT‐0/crenarchaeol ratio suggest that TEX86is strongly influenced by archaeal community changes. The most significant community shifts are observedc. 2.4 Ma and record an increase in Euryarchaeota production and/or a decrease in Thaumarchaeota production, which was driven by the establishment of permafrost and perennial lake ice during the early Pleistocene. Overall, this study demonstrates an important interpretative framework for iGDGTs in lacustrine systems and describes variations in Arctic climate and lake biogeochemistry over timescales of thousands to millions of years.

     
    more » « less